

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Solvent Extraction Separation of Manganese (II) with Tributyl Phosphate

A. A. Yadav^a; S. M. Khopkar^a

^a Department of Chemistry, Indian Institute of Technology, Bombay, India

To cite this Article Yadav, A. A. and Khopkar, S. M. (1969) 'Solvent Extraction Separation of Manganese (II) with Tributyl Phosphate', *Separation Science and Technology*, 4: 4, 349 — 355

To link to this Article: DOI: 10.1080/01496396908052264

URL: <http://dx.doi.org/10.1080/01496396908052264>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Solvent Extraction Separation of Manganese(II) with Tributyl Phosphate

A. A. YADAV and S. M. KHOPKAR

DEPARTMENT OF CHEMISTRY
INDIAN INSTITUTE OF TECHNOLOGY
BOMBAY, INDIA

Summary

A fast and selective method is proposed for solvent extraction of manganese with tributyl phosphate. It is possible to quantitatively extract manganese with 40% tributyl phosphate in xylene from solutions containing 1 *M* hydrochloric acid and 2.5 *M* aluminum chloride as the salting-out agent. The metal from the organic phase is stripped with water and is determined photometrically as its complex with formaldoxime. The probable composition of the extractable species at 1 *M* acidity is $[\text{MnCl}_2 \cdot 3\text{TPB}]$. It is possible to extract manganese in the presence of a twentyfold excess of common ions, but mercury, copper, iron, bismuth, and vanadium interfere. The standard deviation is $\pm 1.05\%$.

Although several chelating agents are used for the solvent extraction of manganese, very few techniques in ion association systems are known. Pyridine (1) was used for its extraction but separation of phases was difficult. Pyridine thenoyltrifluoroacetone (2) mixture was then used for its extraction, but common elements showed interference. The tetraphenylarsonium chloride complex of manganese was extracted in chloroform from an alkaline medium (3,4). Among amines as extractants, dihexyl and didecyldamine (5) proved satisfactory for permanganate ion, but the method was applicable at macro levels.

Tributyl phosphate (6) has been used to separate manganese and cobalt from nickel in neutral solutions; but the extraction is quantitative only at high salting-out agent concentrations. The existing methods are slow, are inapplicable at tracer concentration, and need

optimum control of conditions. The method proposed in this paper is rapid, is simple, and can be adopted at tracer concentrations.

GENERAL PROCEDURE

To an aliquot of solution containing 49.5 μg Mn, add enough aluminum chloride, hydrochloric acid, and water to give concentrations of 2.5 M with respect to aluminum chloride and 1 M with respect to hydrochloric acid in a volume of 25 ml. Shake the solution for 7 min with 10 ml 40% (v/v) TBP in xylene. Separate the layers and strip manganese from the organic phase with two 10-ml portions of distilled water. Manganese from the aqueous phase is determined photo-

TABLE 1
Distribution Ratio as the Function of Acidity
Mn(II) = 49.5 μg , 2.5 M AlCl_3

TBP conc. M	HCl, M (initial)	Extraction % E	Distribution ratio, D
20% (0.73)	0.10	41.7	1.77
	0.25	50.0	2.50
	0.50	58.3	3.50
	0.75	60.4	3.82
	1.00	62.5	4.12
30% (1.09)	0.10	50.0	2.50
	0.25	54.2	3.25
	0.50	66.7	5.50
	0.75	75.0	7.50
	1.00	79.2	9.50
40% (1.46)	0.10	66.7	5.00
	0.25	83.8	12.58
	0.50	91.7	27.51
	0.75	100.0	∞
	1.00	100.0	∞
75% (2.74 M)	0.10	75.0	7.50
	0.25	91.7	27.51
	0.50	100.0	∞
	0.75	100.0	∞
	1.00	100.0	∞
100% (3.66 M)	0.10	75.0	7.500
	0.25	91.7	27.51
	0.50	100.0	∞
	0.75	100.0	∞
	1.00	100.0	∞

metrically with a blue filter as it forms a reddish-brown complex with formaldoxime (7).

RESULTS AND DISCUSSION

Effect of Varying Acid and TBP Concentration

The concentration of hydrochloric acid was varied from 0.10 to 1 M and the concentration of TBP from 20 to 100% (0.73 to 3.66 M) by dilution with xylene, in the presence of 2.5 M aluminum chloride as the salting-out agent. The results in Table 1 show that for quantitative extraction 40% TBP in xylene is essential. The optimum concentration is 1 M hydrochloric acid with 2.5 M aluminum chloride as the salting-out agent. The plot of $\log D$ versus $\log (TBP)$ at 1 M hydrochloric acid shows a slope of 2.7 (Fig. 1), which indicates that the probable composition of the extractable species is $MnCl_2 \cdot 3$ TBP. The optimum reagent concentration is 40% TBP in xylene.

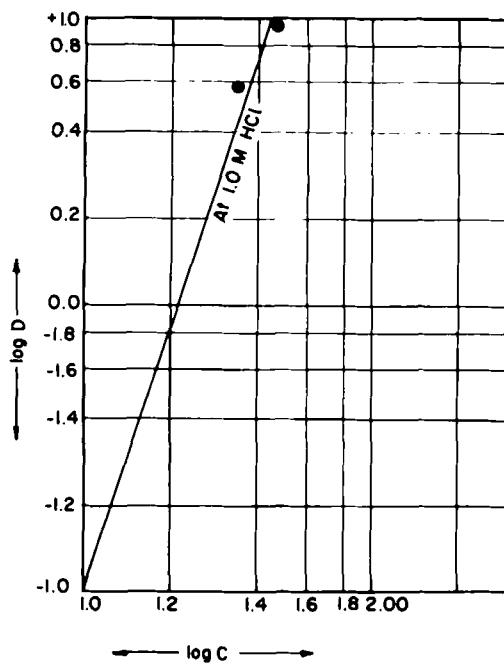


FIG. 1. Extraction as the function of TBP concentration.

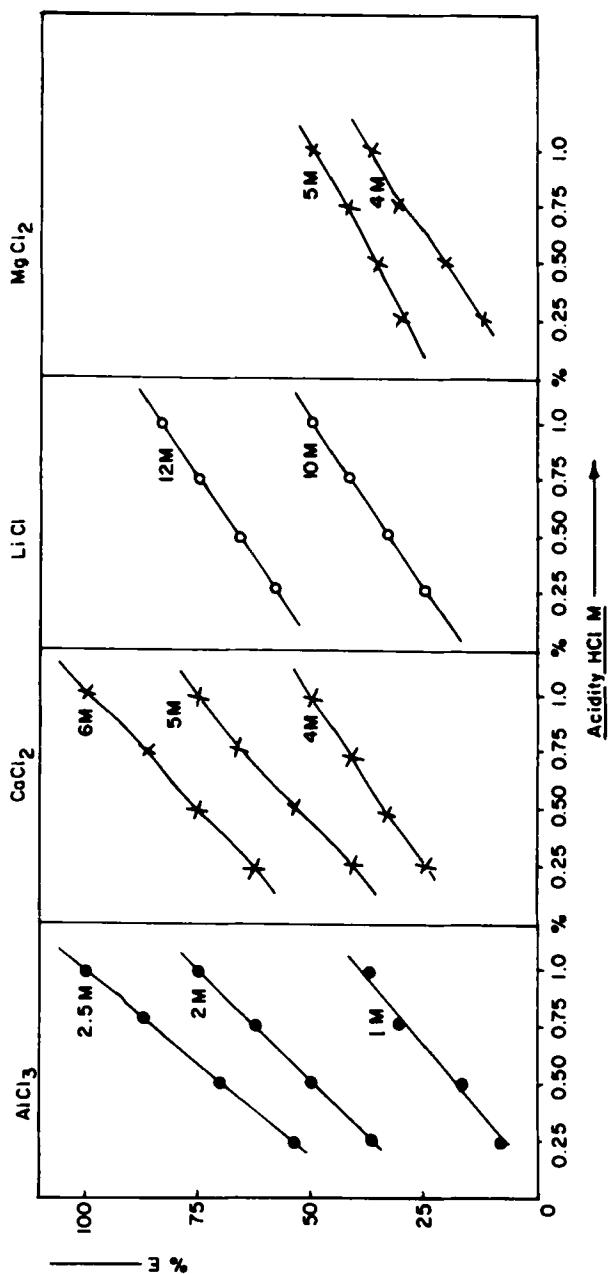


FIG. 2. Effect of salting-out agent.

TABLE 2
Effect of Diverse Ions
Mn(II) = 49.5 μ g, 1 M HCl + 2.5 M AlCl₃; 40% TBP xylene

Foreign ion	Added as	Tolerance limit, μ g
Pb ²⁺	Pb(NO ₃) ₂	500
Hg ²⁺	HgCl ₂	none
Pd ²⁺	PdCl ₂ ·2H ₂ O	500
Au ³⁺	HAuCl ₄ ·xH ₂ O	100
Ru ³⁺	RuCl ₃ ·3H ₂ O	500
Cu ²⁺	CuSO ₄ ·5H ₂ O	none
Cd ²⁺	3CdSO ₄ ·8H ₂ O	500
Sb ³⁺	Sb ₂ (SO ₄) ₃	500
Bi ³⁺	Bi(NO ₃) ₃ ·5H ₂ O	none
Sn ²⁺	SnCl ₂ ·2H ₂ O	1000
Fe ²⁺	FeSO ₄ ·7H ₂ O	none
Fe ³⁺	FeCl ₃ ·6H ₂ O	none
Be ²⁺	Be(NO ₃) ₂ ·3H ₂ O	1000
Zr ⁴⁺	Zr(NO ₃) ₄	500
Ce ⁴⁺	Ce(SO ₄) ₂	1000
Th ⁴⁺	Th(NO ₃) ₄ ·4H ₂ O	500
U ⁶⁺	UO ₂ (NO ₃) ₂ ·6H ₂ O	1000
Zn ²⁺	ZnSO ₄ ·7H ₂ O	1000
Co ²⁺	Co(NO ₃) ₂ ·6H ₂ O	1000
Ni ²⁺	NiCl ₂ ·6H ₂ O	1000
Ba ²⁺	BaCl ₂ ·2H ₂ O	1000
Sr ²⁺	SrCl ₂ ·6H ₂ O	1000
CrO ₄ ²⁻	K ₂ CrO ₄	1000
Mo ₇ O ₂₄ ⁶⁻	(NH ₄) ₆ Mo ₇ O ₂₄	500
VO ₄ ³⁻	NH ₄ VO ₃	none
SeO ₃ ²⁻	Na ₂ SeO ₃	500
TeO ₃ ²⁻	Na ₂ TeO ₃	500
WO ₄ ²⁻	Na ₂ WO ₄	500
SCN ⁻	NH ₄ SCN	1000
S ₂ O ₃ ²⁻	Na ₂ S ₂ O ₃	1000
F ⁻	NaF	500
Br ⁻	NaBr	500
PO ₄ ³⁻	Na ₃ PO ₄	500
Cit ³⁻	Citric acid	none
Tart ³⁻	Tartaric acid	500
Malon ³⁻	Malonic acid	500
Acorb ³⁻	Ascorbic acid	500
C ₂ O ₄ ²⁻	Oxalic acid	none
EDTA ⁴⁻	EDTA (disodium salt)	500

Effect of Salting-Out Agent

The effect of varying concentrations of the salting-out agent on the extraction of manganese with 40% TBP-xylene from 0.25 to 1.0 *M* hydrochloric acid was studied. The results in Fig. 2 show that it is possible to quantitatively extract manganese at 1 *M* hydrochloric acid concentration in the presence of 2.5 *M* aluminum chloride, or 6 *M* calcium chloride. Lithium and magnesium chlorides do not exert any effect on the process of extraction.

Period of Equilibration

The period of shaking was varied from 2 to 15 min. It was observed that the extent of extraction increased from 75% after 1 min to 100% after 7 min and then remained constant up to 15 min. The optimum period of equilibration was thus at least 7 min.

Effect of Diversions

The various ions usually associated with manganese in minerals, etc., were tested for interference (Table 2). The tolerance limit was set at the amount required to cause $\pm 2\%$ error in manganese recovery. The results show that manganese can be extracted in the presence of twentyfold amounts of some ions, while ions such as lead, palladium, ruthenium, cadmium, antimony, zirconium, thorium, and some anions are tolerated in tenfold ratios. But mercury, copper, bismuth, iron, vanadate, citrate, and oxalate interfere. However, their interference can be eliminated by using a suitable masking agent.

The method is rapid, simple, and selective and permits separation and determination of manganese at tracer levels. The average recovery of manganese was $99.6 \pm 0.4\%$. The standard deviation was $\pm 1.05\%$ in ten determinations of 49.8 μg of manganese.

REFERENCES

1. W. Goishi and W. F. Libby, *J. Am. Chem. Soc.*, **74**, 6019 (1952).
2. H. Akaiwa and H. Kawamoto, *Japan Analyst*, **16**, 359 (1967).
3. S. Tribalat and J. Beydon, *Anal. Chim. Acta*, **6**, 96 (1952).
4. S. Tribalat and J. Beydon, *Anal. Chim. Acta*, **8**, 22 (1953).
5. I. A. Simonova, *Ukrain Khim. Zhur.* **32**, 635 (1966).
6. B. Jezowska Trzebiatowska and S. Kopacz, *Roczniki Chem.* **41**, 871 (1967).

7. E. B. Sandell, *Colorimetric determination of traces of metals*, 3rd ed., Interscience, New York, 1959, p. 612.

Received by editor May 22, 1969